15) Find the exact value of x if (3x)^1g3 = (4x)^1g4
First, I add log to both sides.
lg (3x)^lg3 = lg (4x)^lg4
Then i will bring down the power
(lg3)(lg 3x) = (lg4)(lg 4x)
Expand
(lg3)^2+(lg3)(lgx) = (lg4)^2+(lg4)(lgx)
Change of subject
(lg3)^2-(lg4)^2 = (lg4)(lgx)-(lg3)(lgx)
Factorise
(lg3)^2-(lg4)^2 = (lgx)[(lg4)-(lg3)]
Change the subject of equation to (lgx)
lgx = [(lg3)^2-(lg4)^2]/[(lg4)-(lg3)]
Further simplify
lgx = -(lg3+lg4)
=-lg12
Remove lg from both sides
x = 12 ^(-1)
x=1/12 #
No comments:
Post a Comment